AP* States of Matter & Intermolecular Forces Free Response KEY page 1

1991

a) three points

 $MgCl_2$ is ionic and $SiCl_4$ is covalent. The elctrostatic, interionic forces in $MgCl_2$ are much stronger than the intermolecular (dispersion) forces in $SiCl_4$ and lead to a higher melting point. Molten $MgCl_2$ contains mobile ions that conduct electricity whereas molten $SiCl_4$ is molecular, not ionic, and has no conductivity.

b) two points

 MgF_2 has a higher melting point than $MgCl_2$ because the smaller F^- ions and smaller interionic distances in MgF_2 cause stronger forces and higher melting point.

c) one point

The bond length in Br₂ is larger than in F₂ because the Br atom is larger than the F atom.

d) two points

The bond length in N_2 is less than in F_2 because the N-N bond is triple and the F-F is single. Triple bonds are stonger and therefore shorter than single bonds.

1992

- CHELUSIRY-

Explain each of the following in terms of atomic and molecular structures and/or intermolecular forces.

- (a) Solid K conducts an electric current, whereas solid KNO3 does not.
- (b) SbCl₃ has a measurable dipole moment, whereas SbCl₅ does not.
- (c) The normal boiling point of CCl_4 is 77°C, whereas that of CBr_4 is 190°C.
- (d) NaI(s) is very soluble in water, whereas $I_2(s)$ has a solubility of only 0.03 gram per 100 grams of water.

(a) K_conducts_because_of -{-(1-)-----____metallic_bonding sea of mobile e's (or free e's) KNO3 does not conduct because it is -----(1-)----ionically bounded and has immobile ions (or imm. e's) (b) Sh Cl3 has a measurable _dipole moment _because _ it has a lone pair of e's which causes a dipule _] ____ ____its_dipoles_do_not_cancel_______/-(1)it has a trigonal pyramidal structure _____clear__diagram_ illustrating_any_of_the_above ___ SbCl5 has no dipele moment because its dipoles cancel it has a trigonal bipyramidal structure __clear__diagram_illustrating either of the above (c) CBry boils at a higher T than CCly because __ it has stronger intermolecular forces (or vid, W. or dispersion) (1)___ These stronger forces occur because CBry is larger (1) and/or has more e's than CCly. d) NaI has greater aqueous solubility than Iz because NaI is ionic (or poler) whereas Iz is non-polar (or covalent). (1) H20, being polar, interacts with the ions of NaI (t)but not with Iz. (Like diss. like accepted if polarity of H2O clearly indicated.)

1995

.

4

•

(8 pts.)

a)	\dot{V} is the triple point (or point where 3 phases coexist).	(1 pt.)
	Solid, liquid, and vapor (or 3 phases) are in equilibrium.	(1 pt.)
b)	Each point on the curve represents the temperature and pressure where the liquid and vapor (or 2 phases) coexist.	(1 pt.)
<u>OR</u>	At these temperatures and pressures, the two phases are in equilibrium.	(1 pt.)
	The points represent the vapor pressure of the liquid as a	
OR	function of temperature.	(2 pts.)
	The points represent the boiling points of the liquid as a function of (applied) pressure.	(2 pts.)
c)	Changes: sublimation or change between two phases, or energy, or density, or entropy change	(1 pt.)
	Point Y: change in phase occurs specifically at Y	(1 pt.)
d)	The solid will sink.	(1 pt.)
	The positive slope of the solid/liquid equilibrium curve indicates that the solid is more dense than the liquid.	(1 pt.)
Note	If the phase diagram is labelled and if it is done incorrectly, 1 point is deducted from the total for parts b), c), and d).	
	If the response for part c) indicates that a phase change from a less condensed phase to a more condensed phase (e.g., gas to solid), an additional point is deducted.	

- 6. For each of the following, use appropriate chemical principles to explain the observation. Include chemical equations as appropriate.
 - (a) In areas affected by acid rain, statues and structures made of limestone (calcium carbonate) often show signs of considerable deterioration.

Acid rain has a low pH, which means $[H^+]$ is relatively large. The acid reacts with the calcium carbonate solid in the statue according to the following:	1 point for indicating acid rain has a high [H ⁺]
$H^+(aq) + CaCO_3(s) \rightarrow Ca^{2+}(aq) + H_2O(l) + CO_2(g)$ The result is the erosion of the statue as the solid calcium carbonate reacts, forming a salt (partially soluble), a liquid, and a gas.	1 point for indicating calcium carbonate solid forms gaseous carbon dioxide

- (b) When table salt (NaCl) and sugar $(C_{12}H_{22}O_{11})$ are dissolved in water, it is observed that
 - (i) both solutions have higher boiling points than pure water, and

The higher boiling point is due to the change in vapor pressure	
above the solution compared to the vapor pressure above pure	1 point for indicating the lower vapor
water. The presence of a nonvolatile solute lowers the vapor	pressure above the solution
pressure above the solution and results in a higher boiling point.	

(ii) the boiling point of $0.10 M \operatorname{NaCl}(aq)$ is higher than that of $0.10 M \operatorname{C}_{12}\operatorname{H}_{22}\operatorname{O}_{11}(aq)$.

NaCl has a higher boiling point because the change in boiling	
point, ΔT_{bp} , is directly dependent on the <u>number</u> of solute	1 point for indicating NaCl forms
particles in solution. NaCl is an ionic compound which	two moles of particles and $C_{12}H_{22}O_{11}$
dissociates into two particles, whereas $C_{12}H_{22}O_{11}$ is a covalent	forms one mole of particles.
compound and does not dissociate.	

AP[®] CHEMISTRY 2003 SCORING GUIDELINES

(c) Methane gas does not behave as an ideal gas at low temperature and high pressures.

Two factors contribute to nonideal gas behavior: attractive forces and excluded volume. At low temperature, the molecules are moving slower and are closer together. The attractive forces between the molecules are more	1 point for identifying and discussing attractive forces
important relative to their kinetic energy. At high pressure, the molecules of methane are closer together and the volume occupied by the molecules is a greater percentage of the volume of the container. Since the molecules take up some volume, there is less volume available to the methane molecules.	1 point for identifying and discussing excluded volume

(d) Water droplets form on the outside of a beaker containing an ice bath.

	1 point for indicating that the water droplets on the glass surface comes from water in the vapor phase (in the room)
Water vapor in the air in contact with the lower temperature on the surface of the glass condenses because the equilibrium vapor pressure for water at the lower temperature is lower than the pressure exerted by the water in the vapor phase in the room.	 point for indicating that condensation occurs because the equilibrium vapor pressure at the temperature on the glass surface is lower than the pressure due to water vapor in the air in the room OR point for clearly indicating that moisture is forming from the air and that there is sufficient energy transfer (loss) to cause a change of state (condensation)

AP[®] CHEMISTRY 2004 SCORING GUIDELINES

Use appropriate chemical principles to account for each of the following observations. In each part, your response <u>must</u> include specific information about <u>both</u> substances.

(a) At 25°C and 1 atm, F_2 is a gas, whereas I_2 is a solid.

Both F_2 and I_2 are nonpolar, so the only intermolecular attractive forces are London dispersion forces. I_2 is solid because the electrons in the I_2 molecule occupy a larger	1 point for indicating that both molecules have dispersion forces as IMFs
volume and are more polarizable compared to the electrons in the F_2 molecule. As a result, the dispersion forces are considerably stronger in I_2 compared to F_2 .	1 point for indicating that I_2 molecules are more polarizable than F_2 molecules

(b) The melting point of NaF is 993°C, whereas the melting point of CsCl is 645°C.

(c) The shape of the ICl_4^- ion is square planar, whereas the shape of the BF_4^- ion is tetrahedral.

The central iodine atom in ICl_4^- has four bonding	2 points for indicating that ICl_4^- has two unshared
pairs and two lone pairs of electrons on the central	electron pairs, but BF_4^- has no unshared pairs
iodine atom, so the molecular geometry is square	<u>Note:</u> 1 point earned if student gives incorrect numbers
planar. BF_4^- has four bonding pairs and no lone	of unshared electron pairs but indicates that difference
pairs on the central boron atom, so the molecular	in number of unshared electron pairs determines
geometry is tetrahedral.	difference in geometry.
geometry is tetranedral.	difference in geometry.

Page 7

٦

AP[®] CHEMISTRY 2004 SCORING GUIDELINES

(d) Ammonia, NH₃, is very soluble in water, whereas phosphine, PH₃, is only moderately soluble in water.

Ammonia has hydrogen-bonding intermolecular forces, whereas phosphine has dipole-dipole and/or dispersion intermolecular forces. Water also has hydrogen-bonding intermolecular attractive forces. Ammonia is more soluble in water than phosphine because ammonia molecules can hydrogen-bond with water molecules, whereas phosphine molecules cannot hydrogen-bond with water molecules.	1 point for indicating that NH_3 can form hydrogen bonds but PH_3 cannot 1 point for indicating that NH_3 can form hydrogen bonds with water, but PH_3 cannot