AP CHEMISTRY
 CHAPTER 3 STOICHIOMETRY

Avg. atomic mass- weighted avg. based on isotopic composition This is determined using a mass spectrometer.

To calculate :
$\%$ Isotope A (mass of A) $+\%$ Isotope B (mass of B) $+\ldots=$ avg. atomic mass
Example:
What is average atomic mass in grams of lithium if 7.42% exists as ${ }^{6} \mathrm{Li}(6.015 \mathrm{~g} / \mathrm{mol})$ and 92.58% exists as ${ }^{7} \mathrm{Li}(7.016 \mathrm{~g} / \mathrm{mol})$?

A mass spectrometer is an instrument used to determine the relative masses of atoms by the deflection of their ions in a magnetic field.
One use is to determine the isotopic abundance of a sample of an element. Samples are vaporized and ionized. The ions are then separated by mass and the data is graphed.

(b)

Mole \qquad -the \# of C atoms in 12 g of pure carbon-12

Avogadro's Number $=6.022 \times 10^{23}$
The mass of one mole of an element is equal to its atomic mass in grams.
Ex. Cody found a gold nugget that had a mass of 1.250 oz . How many moles was this? How many atoms? ($1 \mathrm{lb}=16 \mathrm{oz}, 453.59 \mathrm{~g}=1 \mathrm{lb}$)
$\underline{\text { Molar Mass }}=$ mass in grams of one mole of a substance
Ex. Calculate the molecular mass of cisplantin, $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$

Ex. How many grams are 3.25 moles of cisplantin?

Percent Composition -"mass percent" or "percent by mass"
Total mass of element $\quad \times 100=\%$ comp of element
Total mass of compound
Ex. Find the percent composition of all elements in cisplantin, $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$.

Determining the Formula of a Compound

Empirical formula- simplest whole number ratio of the various types of atoms in a compound
Molecular formula- the exact formula
(empirical formula) $_{\mathrm{x}}$
Ex. A sample of a compound contains 11.66 g of iron and 5.01 g of oxygen. What is the empirical formula of this compound?

Ex. What is the empirical formula of hydrazine, which contains $87.5 \% \mathrm{~N}$ and $12.5 \% \mathrm{H}$?

Combustion Analysis

Combustion Analysis is done to determine the empirical formula of compounds containing C, H, and sometimes O . Additional O_{2} is added to burn the sample of the compound. All of the $\mathrm{H}_{2} \mathrm{O}$ is absorbed in the first chamber and all of the CO_{2} produced is absorbed in the second chamber. Increases in the masses of the two chambers are used to determine the mass of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ produced.

Ex.
Suppose you isolate an acid from clover leaves and know that it contains only the elements C, H,
 the empirical formula of the acid? Given that another experiment has shown that the molar mass of the acid is $90.04 \mathrm{~g} / \mathrm{mol}$, what is its molecular formula?

Chemical Equations

Reactants \rightarrow Products

Yields
A balanced equation must have the same \# of atoms of each element on each side.
Symbols representing physical states: (s) (l) (g) (aq)

Balancing Chemical Equations

We balance equations by adding coefficients, never by changing formulas.
Most equations can be balanced by inspection. Some redox reactions require a different method.

Ex. $\quad \mathrm{Al}(s)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{AlCl}_{3}(s)$

$$
\begin{aligned}
\mathrm{N}_{2} \mathrm{O}_{5}(s)+\mathrm{H}_{2} \mathrm{O}(l) & \rightarrow \mathrm{HNO}_{3}(l) \\
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{NaCl}(a q) & \rightarrow \mathrm{PbCl}_{2}(s)+\mathrm{NaNO}_{3}(a q)
\end{aligned}
$$

Ex. Phosphine, $\mathrm{PH}_{3}(g)$ is combusted in air to form gaseous water and solid diphosphorus pentoxide.

Ex. When ammonia gas is passed over hot liquid sodium metal, hydrogen is released and sodium amide, NaNH_{2}, is formed as a solid product.

Stoichiometric Calculations

$\underline{\text { Mole ratio }}=$ moles required $/ \mathrm{moles}$ given
Ex. What mass of NH_{3} is formed when 5.38 g of $\mathrm{Li}_{3} \mathrm{~N}$ reacts with water according to the equation: $\mathrm{Li}_{3} \mathrm{~N}(s)+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{LiOH}(s)+\mathrm{NH}_{3}(g)$?

Limiting Reagent

Limiting reagent- reagent that limits or determines the amount of product that can be formed
If you are given amounts of two or more reactants in a stoichiometry problem and asked to determine how much product forms, the easiest thing to do is to work a problem with each reactant and take the smaller of the answers.

$$
\mathrm{X}+2 \mathrm{Y} \rightarrow \mathrm{XY}_{2}
$$

Assume that the reaction above goes to completion. Draw the resulting particles in the right-hand box. What is the limiting reagent?

Ex. How many moles of $\mathrm{Fe}(\mathrm{OH})_{3}(s)$ can be produced by allowing $1.0 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{~S}_{3}, 2.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ and 3.0 mol O 2 to react?
$2 \mathrm{Fe}_{2} \mathrm{~S}_{3}(s)+6 \mathrm{H}_{2} \mathrm{O}(l)+3 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{Fe}(\mathrm{OH})_{3}(s)+6 \mathrm{~S}(s)$

Ex. If 17.0 g of $\mathrm{NH}_{3}(g)$ were reacted with 32.0 g of oxygen in the following reaction, how many grams of $\mathrm{NO}(g)$ would be formed?

$$
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

Theoretical yield- amount of product that should form according to stoichiometric calculations Actual yield- experimental yield $\underline{\text { Percent yield }}=\frac{\text { actual yield }}{\text { Theoretical yield }} \times 100$

Ex. In the reaction of 1.00 mol of CH_{4} with an excess of $\mathrm{Cl}_{2}, 83.5 \mathrm{~g}$ of CCl_{4} is obtained. What is the theoretical yield, actual yield and \% yield?

